Visual QA for Relational Reasoning

Improving models for spatial and semantic relations between objects

- Figure 2 Grad ML Research Vision, QA 5 months
- ML-Vision Intern Semantic Seg | 8 months
- > ML Engineer Classification

7 Months

ML Vision QA Deep Learning

apimpley@cs.umass.edu | anishpimpley.github.io 425-362-8258 | UMASS MS - CS (2017-19)

ANISH PIMPLEY

Problem:

- How are different objects in a scene related?
- > How to decode complex questions about semantic and spatial relationships between objects?
- > How to achieve computational efficiency at scale?

What size is the cylinder that is left of the brown metal thing that is right of the big sphere? \rightarrow Large

Does medium orchid have the minimum area under the curve ? → No

Related Approaches:

Relation Networks - Pairwise score wrt. Qn.

> n⁽⁴⁾ number of relations \rightarrow **SLOW!**

> After Conditioning, lot of redundant relations

Film - Question based affine transforms

> Repeated modulation of image feature maps

> Attention like; most features maps = 0

E. Perez et al. Film: Visual reasoning with a general conditioning layer.

References:

Fig 2 : (a) Film block ; (b) Conditional Batch Norm

Approach:

(A) Group Attention:

Most features after transformation based on question are redundant. Use Attention on groups (g) of objects and implicitly discard irrelevant objects. Reduces number of computations in RN by: g^{4}

(3) Fig 3 :group attention

(B) Embedding as Convolutional kernel:

Reshape question embedding into a conv kernel. Let it implicitly perform attention on the image feature map convolutionally.

(C) Filmed RN - Apply CBN to CNN features:

Learn a FiLM transform and apply to intermediate CNN feature maps.

Results:

Interesting Observations:

Conclusion:

- ➤ Massive amount of feature redundancy
- ➤ Making neurons compete → improves results

Future:

- > Explicit feature competition to eliminate features enmasse
- Rigorous experimentation

More about me:

- > State-of-the-art semantic segmentation model
- > Extended concept to other networks
- > Sole responsibility for architectural choices, implementation, function design & testing
- > Converting hand-drawn diagrams to Simulink

X SenseHawk

ML Engineer

- Extracting information from 3D point clouds: buildings, trees, foliage, cliffs, rocks, rivers
- > Elevation Model construction & ground detection

Grad Research

- > Used for unbalanced datasets
- > Deep Cascade classifiers for early prediction
- > Replaced loss function with firm cascade loss

Seeking Full Time Opportunities

Starting: May 2019

- > Machine Learning
- Data Science
- Computer Vision

Special thanks to our mentors at IESL Umass & Microsoft Research Montreal: Samira Kahou, Adam Atkinson, Adam Trischler for this research opportunity.