Exploring Sophisticated Loss Functions for Early
Prediction in Convolutional Neural Networks

Anish Pimpley Ajinkya Indulkar
CICS CICS
University of Massachusetts Amherst University of Massachusetts Amherst
Ambherst, MA 01003 Ambherst, MA 01003
aindulkar@cs.umass.edu apimpley@cs.umass.edu
Abstract

In this project, we investigate the effects of using sophisticated cascade loss func-
tions on early predictions in image classification tasks. We apply methods native
to cascade classifiers, to guide the learning of Convolutional Neural Networks.
We approach the problem by trying to identify the depth and if to place an in-
termediate classifier in a CNN pipeline, so as to achieve a better accuracy-cost
trade-off. We use a modified AlexNet as the base model. We also extend the
soft cascade and firm cascade loss functions to the multi-label case using each
for training the model. We run experiments comparing the use of these modified
loss functions, instead of a simple summation. We show that the firm cascade
loss function achieves a noticeably better trade-off between early prediction and
accuracy on our model for the MNIST and Noisy MNIST datasets across various
settings for hyper parameters.

1 Introduction

In recent years, neural networks have become the prominent model for visual object recognition
tasks. Much of this popularity is thanks to major breakthroughs[1] in Convolutional Neural Net-
works (CNN) and their astonishing results on image recognition datasets such as CIFAR[2] and
ImageNet[3]]. State of the art models[4] have matched and may have surpassed humans in the Im-
ageNet competition. However, the performance of such models on benchmark datasets is often
focused on accuracy, while paying no heed to the cost or speed of computation. This is at odds with
real world tasks, where computational budget is often limited and real time results are of utmost
importance. For instance, the winner of the COCO 2016 competition used an extremely expensive
ensemble of 5 f-RCNN with Resnet and Inception-Resnet’. []_-] Even the baseline used by the winner,
an Inception v2 SSD [3S]] model, would be considered far too complex and costly for many real world
applications. It is possible to define small, yet decent networks that lie within the computational and
prediction time constraints imposed by the use case. However, it comes at the cost of a few points
of accuracy. This is because all examples in a dataset are not uniformly as difficult to classify. This
raises the question, why do we have to choose between either a complex model where we waste
resources on classifying easy examples, or a simple model that mis-classifies difficult examples?
Intuitively, it would make sense for a model to dynamically allot the necessary but sufficient amount
of resources to classify each example.

The seminal work of Viola & Jones tried to solve this exact problem by using a boosted cascade of
classifiers. Their idea of using a series of thresholded smaller classifiers has been applied to CNNs.
However, they either do not leverage advancements made in cascade classifiers since the early 2000s
[6] [7] or treat the individual CNNs in the model as a black box, causing extra redundant computa-
tion, or both.[8]] Our project aims to address the above 2 problems. Major advancements in cascade

'http://image-net.org/challenges/talks/2016/GRMI-COCO-slidedeck.pdf

classifiers include the introduction of the Soft Cascade [9]and Firm Cascade [10] loss functions.
Instead of using a naive sum over all individual classifier losses, the Firm and Soft cascade try to
model a training time loss, that closely resembles the thresholded form of the test setup. Both firm
and soft cascade were defined for binary classification.

Our main contributions are as follows:

o We extend both Soft and Firm cascade losses by casting them into a form suitable for
multi-class classification.

o We exploit the internal structure of CNNSs, by training a single CNN with a Fully Connected
and Output layer inserted at an intermediate position between CNN layers. This avoids
redundant computation by sharing weights between both the intermediate and the final
classifier, and allows us to jointly train both classifiers in one go.

The project is built on top of an AlexNet inspired CNN. We evaluate our model on MNIST and
Noisy MNIST datasets. We show that replacing existing loss functions with the modified Firm and
Soft cascade facilitates better training. We match our baseline’s accuracy, while showing noticeable
reduction in cost through early predictions.

2 Related work

We will briefly review cascade classifiers and models inspired from them. We will also differentiate
our approach from other computation sensitive approaches used in deep learning.

2.1 Cascade classifier loss functions

In 2001, Viola & Jones|11] introduced cascade classifiers in their landmark paper, describing them
as a series of progressively more complex Adaboost classifiers. Each classifier is thresholded
such that an example is propagated deeper into the cascade only if the output probability beats
the threshold. However, the model was tied to Adaboost and did not rely on gradient descent or
standard optimization methods for building the cascade. Our project is inspired by the original
boosted cascade. However, it is implemented for a completely different model and optimization
landscape.

Raykar et. al. proposed the soft cascade, where the output probability of the cascade was computed
as the product of the output at every intermediate classifier. The combined formulation of the
cascade’s output, allowed for joint optimization of the cascade and treated each model in the
cascade as a black box. This extended the cascade to be applicable to any machine learning model
as long as it emitted probabilities as outputs. The product formulation came with its downsides,
as each classifier was treated equally by the optimizer. The training procedure also did not model
the test mode of thresholded early prediction and was agnostic to the ordering of the cascade. The
probability output of the soft cascade is mathematically represented as:

L

The firm cascade, by Dadkhahi & Marlin introduces a new combination rule that allows the training
loss to closely model the cascade’s behavior in test mode. The probability output of the cascade
is approximately equal to the output probability of the intermediate classifier where the threshold
was crossed. The output of each stage is made to operate in hard decision mode by applying a
normalized logistic nonlinearity to its output. In this case we utilize the linear representation of the
firm cascade.The linear firm cascade is mathematically represented as follows:

L
Pu(y/a) = >0
i=1

-1

(1= ga@)) [T 9a(pr), 1<L
k=1

L—-1
1T ga(o0). I=L
k=1

_ Jalp) = fa(0)
92(P) = T =1 0)

1
foz(p) = (1 + exp(—a(p - 05))

P, is the predicted probability of the cascade. Given the form of the equation ,we expect the value of
P, to lie extremely close to either 1 or 0. In the above case, the sigmoid transformation is centered
at 0.5. The g function represents a normalized Softmax transformation at the output of a layer and 6,
is the aforementioned coefficient for probability of layer 'I’. We use the firm cascade as the primary
loss function to replace a naive linear combination of intermediate cross entropies. We also extend
both the soft and firm cascade for the multi-class use case.

2.2 Computation/ resource efficient neural networks

Significant prior work has been done in obtaining computation efficient networks at test time by
resizing the network after training, by pruning[12] or quantizing weights[[13]] and training smaller
student networks[[14] to reproduce the results of the original model. Our model fundamentally dif-
fers from these methods, as we achieve the accuracy-speed trade-off jointly, at training time itself.
These methods may however, be used in conjunction with our model.

Our work most closely resembles CNN models that take inspiration from cascade classifiers. An-
gelova et. al. use a tiny CNN as an intermediate stage and an ALexNet like model as the final stage.
This model differs from our work, in that both classifiers do not share parameters and are separately
trained. Li et. al. [15] use a cascade of 6 progressively more complex CNNs. However, they too
train each model individually, treating each stage as a black box and choosing thresholds via. hyper
parameter optimization. Both of the above models do not share parameters between CNNs and use
training criterion that do not resemble the model in test mode. Both models were primarily built for
object localization and binary classification.

A few months ago, Multi Scale Densenets(MSDNets) achieved state of the art results by building
a model that exploits the structure of Densenets for building a cascade classifier at multiple scales
within a single neural network. MSDNets showed significant reduction in computation cost without
significantly compromising on accuracy. Both our model and MSDNets share parameters across
intermediate classifiers. However, MSDNets utilize a much more sophisticated and complex design
for their network. They exploit dense connectivity to avoid the interference of intermediate classi-
fiers with each other. At train time, MSDNets use a summation over the cross entropies of individual
classifiers as the loss function. This is a mismatch of the training and prediction time objective. In
contrast, we use both the firm and soft cascade models as alternate combination rules for the loss
functions instead.

3 Methodology

3.1 Problem setup and model overview:

The problem is modeled as a multi-label classification problem. h(z) is a cascade classifier that
maps an example z into a class label. If fi(z) and fo(z) are the predicted probabilities of both
stages respectively:

Prediction = h(z) = (argmaz;[f(z)[i]])

| fi(=z), max(fi(x) > threshold)
fle) = {f2($), maz(f1(z) < threshold)

In simpler terms, the intermediate classifier is responsible for classification when its confidence in a
particular label exceeds a preset threshold. Else, the final classifier is responsible for classifying that

particular data point.The overall pipeline of our classifier if shown in fig[T} The model is identical
to a standard 2 stage cascade, with one exception. That is, the final layer parameter values of the
1st stage classifier are effectively fed as inputs to the 2nd stage. We elaborate on the design of the
stages and train time structure of the model in detail in the following sections.

Shared

parameters

Test

arg-max f5i]
Data

arg-max f4[i]
= predicted class label

Figure 1: Cascade classifier representation of our model

3.2 Base Classifier : CNN:

The internal structure of the cascade is derived from a single base classifier, a CNN. The architec-
ture of the CNN follows heuristic guidelines for building CNNs developed over the last 5 years,
primarily inspired by AlexNet, which may be considered the most widely adopted model of its type.
In addition to CONV, MP, RELU and FC layers, we also use DropOut[16] and Batch Norm|[/17]]
layers, which were not present in the initial AlexNet model and are now considered essential parts
of any deep learning pipeline.

= = | B
= al 2] | = al | 2| |2 = 7
Zlhl &l = Zhl Sl alal Skl Okl Zl| Sl © Final
—:-g-lbmiéiﬁbgimigigi&iuimi‘&bu b
| FC | | FC |

Intermediate Intermediate

classifier (pl) classifier (p2)

Figure 2: Neural Network architecture

Nomenclature : CONV : Convolutional layer ; RELU : Rectified Linear Unit ; MP : Max Pool layer
; FC : Fully Connected layer ; BN : Batch Norm ; DropOut : Dropout in this particular layer.

The model is built as a repeating series of the following blocks [CONV = BN = DROPOUT
= MP = RELU] stacked in front of each other. In each block Dropout could be switched on or
off. This stack was then succeeded by one block of [FC = BN = RELU] and finally an [FC =
SoftMax] block. The number of [CONV = BN = DROPOUT =- MP = RELU] blocks and the
state of Dropout in every block were decided by hyper-parameter optimization. For every possible
configuration of dropout, we added [CONV = BN = DROPOUT = MP = RELU] until the
accuracy of the model saturated for the training dataset. The final design of the base CNN can be
seen in fig[2] In this case our dataset was MNIST.We used the same model structure for Noisy

= predicted class label

MNIST as well.

To make the model suitable for cascade classification an intermediate [FC = SoftMax] layer is
inserted between 2 blocks as seen in fig[2] We also insert a gating function at the intermediate
classifier that terminates computation if the confidence values for the intermediate layer exceed the
threshold. Of the intermediate classifiers shown in fig[2] only one of the intermediate classifiers will
be part of the model at any given point. The figure only shows the 2 possible positions for the one
intermediate classifier.

At training time, the complete cascade is trained jointly using stochastic gradient descent. The loss
function utilizes a combination rule for the output of the 2 classifiers that we elaborate on in the
next section.

3.3 Cascade loss functions: Firm and Soft cascade:

Our core contribution lies in the use of soft and firm cascade loss functions as a replacement for
loss functions that are represented as a sum over individual losses.

The final layers of both the intermediate and the final classifier are SoftMax layers. Thus, for *m’
class labels, the output to the final layer will be vector of len(m), S.T. the values in that vector sum
to 1. The naive model used in most modern early prediction architectures use a sum over cross
entropies of individual probability outputs of each stage. This was also the loss function used in
the MSDNETSs paper which achieved state of the art results. Here on out we refer to this loss as
MSDNET. Note: This refers only to the loss of the MSDNET model, and not the model itself. The
base model used by us is the same for all experiments.

V1, Vo = Output probability for classifiers: intermediate and final stage respectively

D_Wilil=_Valil=1

The soft cascade is adapted to the multi label case by representing the out probability Py (y|z) as:

loss = CrossEntropy(Px(y|z))

L
P, (y|z) = elementwise H Vi[i]

i=1
This outputs a vector of the same length as both V7 & V4 with element [i] equal to V;[i] % Va[i].

In the case of the firm cascade, we wish for the output probability to be effectively equal to
the that of the classifier which which output it. It is adapted to the multi label case by representing
the out probability P, (y|x) as:

Po(ylz) = ga(V1) ¥ Vi + (1 = ga (V1)) % ga(V2) * V2

loss = CrossEntropy(P.(y|x)) + A= (1 — g(V1))

The function g, and f, use the same operations as defined in the firm cascade paper, however all
multiplies are used as element-wise products, instead of scalar products. Also, instead of dropping
negative cases, we are choosing whether to predict a label early or not. Thus, the above modification
allows us to return a P, (y|z) = V; if the st classifier chooses to classify the sample and P, (y|z) =
V5 if the final classifier classifies the output. In keeping with the original firm cascade paper we
choose a penalty term, that is added to the cross entropy in the loss function to loosely model the
cost of computation. Here we choose A* (1 — g, (V7)) as the penalty term. Taking cues from the firm
cascade paper, we pre-train the model on our dataset and use it as a well performing initialization
to train the firm cascade. We tried pre-training all of the competing models. However, we only
saw significant gains for the firm cascade. The model also requires some degree of penalization to
converge to a competitive model. Since the pre-trained initialization is tuned to perform well on the
final classifier, we suspect that it might cause lack of gradient flow through the intermediate classifier.
The introduction of a penalization term dependent on the output of the intermediate classifier might
be helping guide the training of the intermediate classifier.

4 Dataset

The dataset we are using for our experiments is the MNISTE| [18] database of handwritten digits.
MNIST is a popular dataset in Machine Learning and is often used for comparison with state-of-
art architectures. Although MNIST has fallen out of fashion, we decided to use MNIST due to
its simplicity and fast train time. Whereas datasets like ImageNet take hours or days to train on
expensive GPUs, MNIST takes a few minutes to train on our basic laptop computers. We believe it
will be enough to show the speed-accuracy trade-off that we are trying to demonstrate. It consists of
handwritten digits. There are 60,000 training samples and 10,000 test samples in the dataset.
Figure [3] shows what our samples look like. Each sample is a handwritten digit that can be from

I v 0 E1 1S K4 E1 A 4

Figure 3: Samples from the MNIST dataset

0 to 9. The images are 28x28 and are centered and normalized. They also contain grey pixels as a
result of anti-aliasing. The dataset is approximately balanced and there are roughly equal number of
samples from each class. The train-test split is stratified. The dataset is stored in a binary format that
is described in detail on the website. Each pixel is stored as 1 byte and the value ranges from O to
255. The images are greyscale, therefore they are single-channel. We will not go into the details of
the format as there are popular helper methods available for reading the MNIST data. Specifically,
we use the inbuilt PyTorch MNIST dataseﬂ We realized that the basic MNIST dataset was saturated
in terms of performance. Therefore we also make the dataset artificially harder by adding Gaussian

Figure 4: Noisy samples from the MNIST dataset

salt and pepper noise. The resulting examples are shown in the Figure 4]

5 Experiments

We train the neural network shown in Figure [2] We are using an existing AlexNet like network
built in PyTorch. Each convolution layer has kernel size 5 and stride 1. We train the entire network
without any intermediate classifiers and call it "Base’. For all experiments, we set threshold to 0.6
and alpha to 128 unless otherwise stated. For the firm cascade loss, we set penalty to 0.6. Note
that these are just knobs that trade-off between accuracy and cost and there is no predefined single
optimal trade off. Therefore, we don’t do hyper parameter search for them. For each model, we
train the network for a fixed number of 20 epochs. We use batches of size 64, with a learning rate of
0.001 and momentum of 0.5 with SGD.

During test time, the network is operated in hard mode and if the intermediate classifier returns a
probability greater then threshold, we return that result without propagating it further. Intuitively,
we are trading-off speed and accuracy by introducing this threshold. If our application requires fast
inference at the cost of accuracy, the threshold should act as a knob that allows us to do that. This
will result is cost savings in the form of computing power.

We first perform experiments on the original MNIST dataset and then on the Noisy MNIST dataset
that we construct. We perform experiments on convergence of different models by checking their
training loss across epochs. This should give us a general idea about the convergence of our models.

2http://yann.lecun.com/exdb/mnist/
3http://pytorch.org/docs/master/torchvision/datasets.html

The relative loss values are not comparable as they might be on different scales but the general trend
should be decreasing.

We then compare the relative test accuracies of various models across epochs. This will tell us how
fast each model converges relative to one another and also the final test accuracies of each model.
This is important as this will tell us the performance of each model for a fixed threshold. It will also
tell us how the early prediction models fare against our Base model. We expect the accuracy of the
early prediction models to be less than the base model as they use fewer computational resources
and predict early. We expect the Firm model to perform the best followed by Soft model and then
MSDNet. This is because we believe the Firm model best encapsulates the hard-mode of the testing
phase in its training phase. The other two models have a mismatch between the testing objective and
the training objective, hence we expect them to perform worse than the Firm model. We compare
two versions of each model where classifier is in position pl and in position p2 in the network as
shown in Figure|2] We expect the p2 versions to perform better than the p1 versions because the p2
versions will have higher capacity in comparison to p1 and in theory should perform better.

We then compare accuracy of Soft loss, Firm loss and MSDNet inspired loss for different values
of thresholds. Intuitively, for lower values of thresholds the samples should be classified early with
less accuracy and for higher values of thresholds, the samples should be propagated further into the
network resulting in higher accuracy. Again, we expect the p2 versions to perform better than the
p1 versions for the aforementioned reason.

Similarly, we compare the number of early predictions for different values of threshold. Our hy-
pothesis is that for lower values of thresholds the network will have higher early predictions because
a lower threshold signifies low confidence. In the extreme case when the threshold is 0, all samples
will be predicted early i.e. at the first intermediate classifier and no samples will propagate till the
end. On the other extreme, if we set threshold to 1, all samples will propagate till the end because
the intermediate classifier will never predict a sample with probability 1. We expect to see a grad-
ual decrease in early predictions as the threshold increases. Again, we expect the p2 versions to
have more early predictions because of higher capacity when compared to p1. We also expect the
Firm model to perform better than the other two models for the aforementioned reasons. Addition-
ally, Firm model also has a penalty parameter that forces the network to learn to predict early. The
network is penalized proportional to the penalization term for samples that propagate till the end.

Additionally, we also compute the accuracy and early predictions of Firm model and see the effect
of the penalty strength. We hypothesize that the number of early predictions should increase with
the penalty strength because the penalty is for sample propagation. So the penalty is only applied if
sample is not predicted early. In this case, it would make sense for the early prediction to increase.
We also expect the accuracy to go down as we increase the penalty as the network will try to predict
more and more examples as early as possible. For some examples, the shallower network might not
have enough capacity to predict them correctly.

Finally, we compare the Accuracy and Early predictions for the different models for a fixed value of
threshold = 0.6 to get an idea of its performance and behavior.

6 Results

6.1 Basic MNIST

We train the network for 20 epochs and plot the training loss in Figure [5a] The results show that
using our training parameters our network is converging for the different models. Although the loss
values are plotted on a single plot, their relative values don’t mean much since they use slightly
different loss functions. The Firm models don’t see much convergence because of pretraining as
mentioned before. We plot the loss values for every 100 iterations of training.

Figure [5b] shows the relative Test accuracy of the models during training for 20 epochs. The base
model significantly outperforms our models. We see that the MSDNet p1 has significantly lower
performance than the other models. The Firm and Soft models perform reasonably well. It also
confirms out hypothesis that in general p2 models perform better than p1 models.

Training Loss v/s Iterations % 100

5 F
—— Base
Soft pl
4+ —— Soft p2
—— Firm p1
3] —— Firm p2
—— MSDnet pl

MSDnet p2

Training Loss
N

100
Iterations % 100

(a) Training loss as a function of iterations % 100

Accuracy v/s Epochs

100
0{ L7 _emmTTTTTT
& 80
z
@ Base
5] 701 Soft p1
g Soft p2
- Firm pl
60 - Firm p2
« MSDnet pl
/ —— MSDnet p2
501 ‘ ‘ : ‘
5 10 15 20
Epochs

(b) Test accuracy as a function of epochs

Figure 5
Accuracy v/s Thresholds
98
96
§
o944
[.
3
092l —*- Soft p1
< —e— Soft p2
Firm p1
90 1 Firm p2
-=- MSDNet p1
88 | —=— MSDNet p2 .
04 05 06 07 08 0.9
Thresholds

Early predictions v/s Thresholds
10000 1
9800 1
9600
v
S
5 94004
2
T 9200
o
> 9000 - Soft pl
T —e— Soft p2
“ 8800 Firm p1
Firm p2
86001 _m- MSDNet pl
8400 | —* MSDNet p2 .
0.4 0.5 0.6 0.7 0.8 0.9
Thresholds

(a) Accuracy as a function of threshold

(b) Early predictions v/s threshold

Figure 6

The results of our experiments on threshold with accuracy and early predictions are shown in Figure
[6a] and Figure[6b] Surprisingly, the MSDNet accuracy reduces as threshold increases. As expected,
the number of early predictions decrease as we increase the threshold. This confirms our hypothesis
that the threshold acts as a speed-accuracy threshold knob. As we increase threshold the number of
early predictions decrease as expected. In terms of early predictions, Firm model performs the best
followed by MSDNet and Soft model. Additionally, all p2 models perform better than p1 models
because of higher capacity. The p2 models also have higher early predictions than p1 models, again
because of higher capacity. Note that for threshold=1.0, we get O early predictions because all
examples propagate to the end.

Figure [/| compares the relative performance of the models for a fixed threshold value=0.6. Note
that we only compare the p2 versions for simplicity. The pl versions show the same trends. Base
accuracy is higher than all our early classifiers. Out of the three early classifiers, the Firm model
performs the best in terms of accuracy and early predictions. Soft model has higher accuracy but
lower early predictions when compared to MSDNet.

6.2 Noisy MNIST

We perform some of the same experiments on the Noisy version of MNIST as shown in Figure]

100.0

Accuracy v/s Models at threshold=0.6

97.5 11

95.0 11

92.5 7

90.0 1

87.5 11

Accuracy (%)

85.0 11

82.5 11

Base Soft p2 Firm p2

Model

MSDNet p2

Early exits v/s Models at threshold=0.6

10000

9800

9600

9400

9200

9000

8800

8600

Soft p2

Firm p2
Model

MSDNet p2

Figure 7: Accuracy and early predictions for our models

Accuracy v/s Epochs (Noisy MNIST)

g
>
o
c
3
S 704 == Soft pl
< —— Soft p2
——- Firm p1
—— Firm p2
604 ——- MSDnet pl
—— MSDnet p2
5 10 15 20
Epochs

Figure 8: Accuracy v/s Epochs

Accuracy v/s Thresholds (Noisy MNIST)

Accuracy (%)

—#— Firm p2 \
\
86 1 —m- MSDNet pl N
—s— MSDNet p2 .
0.4 05 0.6 0.7 0.8 0.9
Thresholds

(a) Accuracy as a function of threshold

Figure 9

Early predictions v/s Thresholds (Noisy MNIST)

10000

9500 1

9000

8500 1

8000

Early Predictions

7500 +

7000

—--
——
—a-
—
--
—.—

Soft p1 ~
Soft p2

Firm pl

Firm p2

MSDNet p1 N
MSDNet p2 -

0.4

0.6 0.7 0.8

Thresholds

0.5

(b) Early predictions v/s threshold

Figure[Da] shows the effect of thresholds on the Accuracy of the classifiers. Here we see a more dras-
tic difference of performance as the task becomes harder. The p2 versions significantly outperform
p1 versions that can be attributed to the higher capacity of p2 versions.

We also see in FigureOb]that for Noisy MNIST, the number of early predictions also drop drastically
with increase in threshold. Furthermore the p2 versions have higher early predictions compared to
p1 versions, again because of higher capacity. This shows that as the task becomes harder and

harder, early prediction becomes more and more difficult and more samples are propagated till the
end.

ocI)Egrly exits v/s Models at threshold=0.6 (Noisy MNIST)

100 &ccuracy v/s Models at threshold=0.6 (Noisy MNIST) 10
i 9800 {-
97.5
9600 -

95.0 1
S o5 N 2 0400 -
< . x

U

>
@ 90.0 — [N - T 2 9200 1SR -
3 &
g 8751 = 90004+

850 7777777777777777777777 BBDO 4 |

8251 [

80.0 - X

Base Soft p2 Firm p2 MSDNet p2 Soft p2 Firm p2 MSDNet p2
Model Model

Figure 10: Accuracy and early predictions for our models

For a fixed threshold=0.6, Figure[I0]shows the Accuracy and Early predictions for the different mod-
els. We see that the Firm model outperforms all other early prediction models in terms of accuracy
and early predictions. In this case the Soft model also outperforms MSDNet in both accuracy and
early predictions. This corroborates our hypothesis about the performance of the different models.

Early predictions v/s Firm cascade penalty strength (Noisy MNIST)
Accuracy v/s Firm cascade penalty strength (Noisy MNIST) 9925

9900 -

w 98751

Early prediction
0 WV v
® W
o N O
S w o

9775
9750
. : } : : 9725 ; - T T .
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Penalty strength Penalty strength

Figure 11: Accuracy and early predictions for Firm model v/s Penalty

Figure[[T|shows the accuracy and the early predictions of the Firm model as a function of the Penalty
strength with threshold=0.6. The accuracy increases as the Penalty increases which is counter-
intuitive as one would imagine that increasing the penalty forces early predictions and results in
lower performance. As expected, however, the p2 version performs better than the p1 version for
both accuracy and early predictions. The early predictions, on the other hand increase as penalty
increases which is expected because the penalty acts as a knob that controls the speed of inference.

7 Discussion and Conclusions:

We presented a novel combination of the firm-cascade model integrated with a CNN, that was
cast into a multi-label classification problem with early exits. The design of our model was based
around allowing maximal reuse of parameters, joint training of the cascade and a training objective
that closely modeled a cascade’s operation at test time. We showed that our modifications to the
firm and soft cascade models preserved their behavioral traits from the binary case. Keeping the
Model pipeline and dataset simple, allowed us to conduct a range of experiments in a controlled and

10

well documented environment. The results show robustness of the firm cascade model in different
settings, as it significantly outperform the MSDNet objective of a simple summation and edges out
the soft cascade more often than not. Previous literature has largely resorted to treating CNNs used
in cascades as black boxes and implemented algorithms largely based on the stock Viola & Jones
cascade. We show that there there potential gains to be made if the cascade is directly integrated
into the CNN and if sophisticated training objectives such as the firm and soft cascade are used
instead of naive sums of Cross entropies. Finally, we were also able to confirm behavioral trends of
early predictions wrt. position of the intermediate classifier and their respective thresholds.

We also noticed a few limitations of using such an approach. Sharing parameters means that
our classifiers always trades off between accuracy and early prediction. Thus, we consistently
saw a non-negligible drop in accuracy for all cascades over the baseline. The Multi-Scale Dense
approach in MSDNets avoids this problem by using dense skip connections and multiple output
routes.Secondly, both soft cascade and firm cascade add additional tuning parameters can be
completely avoided in a sum of losses. Lastly, our experiments were run on a limited model and a
relatively top heavy dataset on the accuracy front. It is yet to be seen how well such models scale to
deeper networks, more stages and more difficult datasets.

Given the boundary pushing results of MSDNets, we hope to adapt both the firm and soft
cascade to be applied to the MSDNet architecture and conduct robust experiments on it. The
complexity of the model meant it took up a day to a train on personal commodity hardware for
baseline datasets, making it for unfeasible for this project. We would also have liked to use the
energy estimation tool[[19] from work at MIT’s Eyeriss project, to accurately model the savings
made by early predictions.

8 Acknowledgements:

The authors would like to thank Prof. Ben Marlin for helpful guidance on this project. The project
was inspired by work done by the authors under the guidance of Prof. Ben Marlin during their
Summer 2017 independent study.

11

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097-1105, 2012.

[2] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 1026-1034, 2015.

[5] Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. 2017.

[6] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q
Weinberger. Multi-scale dense convolutional networks for efficient prediction. arXiv preprint
arXiv:1703.09844, 2017.

[7] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural
networks without residuals. CoRR, abs/1605.07648, 2016.

[8] Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit S Ogale, and Dave Ferguson.
Real-time pedestrian detection with deep network cascades.

[9] Vikas C Raykar, Balaji Krishnapuram, and Shipeng Yu. Designing efficient cascaded classi-
fiers: tradeoff between accuracy and cost. In Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 853-860. ACM, 2010.

[10] Hamid Dadkhahi and Benjamin M Marlin. Learning tree-structured detection cascades for
heterogeneous networks of embedded devices. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1773-1781. ACM,
2017.

[11] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, volume 1, pages [-511-1-518 vol.1, 2001.

[12] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S. Touret-
zky, editor, Advances in Neural Information Processing Systems 2, pages 598—605. Morgan-
Kaufmann, 1990.

[13] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-
rized neural networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
stat, 1050:9, 2015.

[15] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A convolutional neural
network cascade for face detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5325-5334, 2015.

[16] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448-456, 2015.

[17] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of machine
learning research, 15(1):1929-1958, 2014.

[18] Yann LeCun, Corinna Cortes, and Christopher JC Burges. Mnist handwritten digit database.
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

[19] Vivienne Sze, Tien-Ju Yang, and Yu-Hsin Chen. Designing energy-efficient convolutional
neural networks using energy-aware pruning. 2017.

12

	Introduction
	Related work
	Cascade classifier loss functions
	Computation/ resource efficient neural networks

	Methodology
	Problem setup and model overview:
	Base Classifier : CNN:
	Cascade loss functions: Firm and Soft cascade:

	Dataset
	Experiments
	Results
	Basic MNIST
	Noisy MNIST

	Discussion and Conclusions:
	Acknowledgements:

